воскресенье, 1 апреля 2018 г.

Estratégias quantitativas de negociação diária


Negociação Quantitativa.


O que é 'negociação quantitativa'


A negociação quantitativa consiste em estratégias de negociação baseadas em análises quantitativas, que dependem de cálculos matemáticos e processamento de números para identificar oportunidades de negociação. Como a negociação quantitativa é geralmente usada por instituições financeiras e fundos de hedge, as transações geralmente são grandes em tamanho e podem envolver a compra e venda de centenas de milhares de ações e outros títulos. No entanto, o comércio quantitativo está se tornando mais comumente usado por investidores individuais.


Análise quantitativa.


Tendência de Atributos.


Dinâmica de mercado.


Volatilidade Local.


QUEBRANDO "Negociação Quantitativa"


As técnicas de negociação quantitativa incluem negociação de alta frequência, negociação algorítmica e arbitragem estatística. Essas técnicas são rápidas e normalmente têm horizontes de investimento de curto prazo. Muitos comerciantes quantitativos estão mais familiarizados com ferramentas quantitativas, como médias móveis e osciladores.


Compreender Negociação Quantitativa.


Comerciantes quantitativos aproveitam a tecnologia moderna, a matemática e a disponibilidade de bancos de dados abrangentes para tomar decisões comerciais racionais.


Comerciantes quantitativos adotam uma técnica de negociação e criam um modelo usando a matemática, e então desenvolvem um programa de computador que aplica o modelo a dados históricos do mercado. O modelo é então backtested e otimizado. Se resultados favoráveis ​​forem alcançados, o sistema é então implementado em mercados em tempo real com capital real.


A forma como os modelos de negociação quantitativa funcionam pode ser melhor descrita usando uma analogia. Considere um boletim meteorológico em que o meteorologista prevê 90% de chance de chuva enquanto o sol estiver brilhando. O meteorologista deriva essa conclusão contraintuitiva ao coletar e analisar dados climáticos de sensores em toda a área. Uma análise quantitativa computadorizada revela padrões específicos nos dados. Quando esses padrões são comparados com os mesmos padrões revelados em dados históricos do clima (backtesting), e 90 de 100 vezes o resultado é chuva, então o meteorologista pode tirar a conclusão com confiança, daí a previsão de 90%. Os comerciantes quantitativos aplicam este mesmo processo ao mercado financeiro para tomar decisões comerciais.


Vantagens e desvantagens da negociação quantitativa.


O objetivo da negociação é calcular a probabilidade ótima de executar uma negociação lucrativa. Um trader típico pode efetivamente monitorar, analisar e tomar decisões de negociação sobre um número limitado de títulos antes que a quantidade de dados recebidos sobrecarregue o processo de tomada de decisão. O uso de técnicas quantitativas de negociação ilumina esse limite usando computadores para automatizar as decisões de monitoramento, análise e negociação.


Superar a emoção é um dos problemas mais difusos da negociação. Seja medo ou ganância, quando se negocia, a emoção serve apenas para sufocar o pensamento racional, o que geralmente leva a perdas. Computadores e matemática não possuem emoções, então a negociação quantitativa elimina esse problema.


A negociação quantitativa tem seus problemas. Os mercados financeiros são algumas das entidades mais dinâmicas que existem. Portanto, os modelos de negociação quantitativos devem ser tão dinâmicos para serem consistentemente bem-sucedidos. Muitos comerciantes quantitativos desenvolvem modelos que são temporariamente lucrativos para as condições de mercado para as quais foram desenvolvidos, mas acabam fracassando quando as condições do mercado mudam.


Algorithmic Trading System Design & amp; Implementação.


AlgorithmicTrading é um desenvolvedor de sistema de negociação de terceiros especializado em sistemas automatizados de negociação, estratégias de negociação algorítmica e análise de negociação quantitativa. Oferecemos dois algoritmos de negociação distintos para comerciantes de varejo e investidores profissionais.


Assista ao nosso blog de vídeo algorítmico em que nosso principal desenvolvedor analisa o desempenho a partir de 6/10/17 & ndash; 8/8/17 usando nosso sistema de negociação automatizado. Visite nosso Blog Algorithmic Trading para ver todos os vídeos de desempenho de 2016-2018 no acumulado do ano. Os futuros e opções de negociação envolvem risco substancial de perda e não são adequados para todos os investidores.


Comece hoje mesmo na negociação algorítmica.


Os Destaques do Swing Trader.


Nossa Swing Trading Strategy negocia o S & P 500 Emini Futures (ES) e o Ten Year Note (TY). Este é um sistema de negociação 100% automatizado que pode ser executado automaticamente com os melhores esforços por vários Corretores Registrados da NFA. Também pode ser instalado e carregado na plataforma Tradestation. Os dados seguintes abrangem o período de avanço (fora da amostra) que abrange 10/1 / 15-3 / 14/18. A negociação de futuros envolve risco substancial de perda e não é apropriada para todos os investidores. O desempenho passado não é indicativo de desempenho futuro. Esses dados presumem que 1 unidade (US $ 15.000) foi negociada durante todo o período em análise (non-compounded).


* Perdas podem exceder o rebaixamento máximo. Isso é medido de pico a vale, fechando o comércio para fechar o comércio. O desempenho passado não é indicativo de desempenho futuro.


O Swing Trader Mensal P / L.


Os negócios iniciados em outubro de 2015 são considerados Walk-Forward / Out-of-Sample, enquanto os negócios anteriores a outubro de 2015 são considerados back-tested. Os lucros / perdas fornecidos são baseados em uma conta de US $ 15.000 que troca 1 unidade no Swing Trader. Esses dados não são compostos.


* Perdas podem exceder o rebaixamento máximo. Isso é medido de pico a vale, fechando o comércio para fechar o comércio. O desempenho passado não é indicativo de desempenho futuro.


CFTC REGRA 4.41: Os resultados são baseados em resultados de desempenho simulados ou hipotéticos que possuem certas limitações inerentes. Ao contrário dos resultados mostrados em um registro de desempenho real, esses resultados não representam negociação real. Além disso, como esses negócios não foram efetivamente executados, esses resultados podem ter uma compensação maior ou menor pelo impacto, se houver, de alguns fatores de mercado, como a falta de liquidez. Programas de negociação simulados ou hipotéticos em geral também estão sujeitos ao fato de que eles são projetados com o benefício da retrospectiva. Não está sendo feita nenhuma representação de que qualquer conta terá ou poderá obter lucros ou perdas similares a essas demonstrações.


Noções básicas de negociação algorítmica.


O Algorithmic Trading, também conhecido como Quant Trading, é um estilo de negociação que utiliza algoritmos de previsão de mercado para encontrar transações potenciais. Existem várias subcategorias de negociação quantitativa para incluir High Frequency Trading (HFT), Arbitragem Estatística e Análise de Predição de Mercado. Na AlgorithmicTrading, nós nos concentramos no desenvolvimento de sistemas de negociação automatizados que fazem negócios de swing, dia e opções para aproveitar as ineficiências do mercado.


Atualmente, estamos oferecendo dois sistemas de negociação de futuros que negociam o ES & amp; Futuros de TY. Continue lendo para ver por si mesmo como implementar um sistema de negociação de algo projetado profissionalmente pode ser benéfico para suas metas de investimento. Nós não somos registrados Consultores de Negociação de Commodities e, portanto, não controlamos diretamente as contas de clientes & ndash; no entanto, negociamos ambos os sistemas de negociação com nosso próprio capital, utilizando um dos corretores de execução de negociação automatizada.


Exemplo de negociação algorítmica.


Estratégia de negociação de futuros: o pacote Swing Trader.


Este pacote utiliza nossos algoritmos de melhor desempenho desde o início. Visite a página do comerciante do swing para ver preços, estatísticas comerciais completas, lista completa de comércio e muito mais. Este pacote é ideal para o cético que deseja negociar um sistema robusto que tenha se saído bem em negociações cegas para fora e para fora da amostra. Cansado de modelos otimistas com back-testing que nunca parecem funcionar quando negociados ao vivo? Se assim for, considere este sistema de negociação de caixa preta. Este é o nosso algoritmo de negociação mais popular para venda.


Detalhes no Swing Trader System.


Futuros & amp; Estratégia de negociação de opções: o pacote S & amp; P Crusher v2.


Este pacote utiliza sete estratégias de negociação em uma tentativa de diversificar melhor sua conta. Este pacote utiliza comércios de swing, day trades, condutores de ferro e chamadas cobertas para tirar proveito de várias condições de mercado. Este pacote é comercializado em unidades de tamanho de US $ 30.000 e foi lançado ao público em outubro de 2016. Visite a página do produto S & P Crusher para ver os resultados do back-test com base nos relatórios de negociação.


Detalhes no triturador S & P.


Cobrindo os fundamentos do design do sistema de negociação automatizado.


Múltiplos Sistemas de Negociação Algorítmica Disponíveis.


Escolha de um dos nossos sistemas de negociação & ndash; O Swing Trader ou o S & amp; P Crusher. Cada página mostra a lista de negociação completa, incluindo resultados de otimização de post-forward, walk-forward. Esses sistemas de negociação informatizados de caixa preta são totalmente automatizados para gerar alfa ao tentar minimizar o risco.


Algoritmos de negociação múltiplos trabalhando juntos.


Nossa metodologia de negociação quântica nos emprega várias estratégias de negociação de algoritmos para diversificar melhor sua conta de negociação automática. Saiba mais visitando nossa página de metodologia de design de estratégias de negociação.


Trades During Bear & amp; Mercados de touro.


Em nossa opinião, a chave para o desenvolvimento de um sistema de negociação algorítmica que realmente funciona é contabilizar múltiplas condições de mercado. A qualquer momento, o mercado poderia passar de um touro para um mercado em baixa. Ao tomar uma posição agnóstica de direção de mercado, estamos tentando superar o desempenho em Bull & amp; Condições de mercado do urso.


Sistemas de negociação totalmente automatizados.


Você pode negociar automaticamente nosso software algorítmico usando um corretor de execução automática (com os melhores esforços). Temos vários corretores para você escolher. Remova as decisões baseadas em emoções de sua negociação usando nosso sistema de negociação automatizado.


O comércio algorítmico funciona?


Acompanhe o progresso diário de nossos algoritmos de negociação quantitativa com o aplicativo do corretor OEC. Você também receberá declarações diárias da empresa de compensação da NFA Registered. Você pode comparar cada uma das suas negociações com a lista comercial que publicamos no final de cada dia. Exemplos completos de negociação algorítmica são postados para todos verem. A lista completa de transações pode ser vista visitando a página de negociação algorítmica do sistema que você está negociando. Quer ver algumas declarações de contas ativas? Visite os retornos ao vivo & amp; página de instruções.


Múltiplas Estratégias de Negociação Quant.


Nossos sistemas de negociação quantitativos têm diferentes expectativas com base nos algoritmos preditivos empregados. Nossos Sistemas de Negociação Automatizada colocarão operações de swing, day trade, condutores de ferro & amp; chamadas cobertas. Estas Estratégias 100% Quant baseiam-se puramente em indicadores técnicos e algoritmos de reconhecimento de padrões.


Nosso software de negociação automatizada ajuda a remover suas emoções da negociação.


Algoritmos de negociação múltiplos são negociados como parte de um maior sistema de negociação algorítmica.


Cada estratégia de negociação algorítmica oferecida tem vários pontos fortes e fracos. Seus pontos fortes e fracos são identificados com base em três estados de mercado potenciais: Strong Up, Sideways & amp; Abaixo mercados em movimento. A estratégia de negociação de condores de ferro supera os mercados em movimento lateral e ascendente, enquanto o algoritmo das notas de tesouro se sobressai nos mercados em baixa. Com base no backtesting, espera-se que o algoritmo de momentum tenha um bom desempenho durante os mercados em ascensão. Confira a seguinte coleção de vídeos, onde cada algoritmo de negociação oferecido é revisado por nosso desenvolvedor líder. Os pontos fortes de cada algoritmo de negociação são analisados ​​juntamente com as suas fraquezas.


Vários tipos de estratégias de negociação são usados ​​em nosso software de negociação automatizada.


Comissões do dia são inseridas & amp; saiu no mesmo dia, enquanto as negociações de giro terão um longo prazo de negociação com base nas expectativas para o S & amp; P 500 a tendência de maior ou menor no prazo intermédio. Os negócios de opções são colocados nas opções semanais do S & amp; P 500 sobre futuros, normalmente entrando em uma segunda-feira e mantendo até a expiração da sexta-feira.


Swing Trading Strategies.


As seguintes Swing Trading Strategies colocam operações de swing direccionais no S & amp; P 500 Emini Futures (ES) e na Nota de Dez Anos (TY). Eles são usados ​​em ambos os sistemas de negociação automatizados que oferecemos para aproveitar as tendências de longo prazo que nossos algoritmos de predição de mercado estão esperando.


Futures Swing Trading Strategy # 1: Momentum Swing Trading Algorithm.


A Momentum Swing Trading Strategy coloca os negócios do swing no Emini S & amp; P Futures, aproveitando as condições de mercado que sugerem um movimento de prazo intermediário mais alto. Este algoritmo de negociação é usado em ambos os nossos sistemas de negociação automatizados: O S & amp; P Crusher v2 & amp; O comerciante do balanço.


Estratégia de Negociação de Futuros Swing # 2: Algoritmo de Notas do Tesouro de Dez Anos.


A Tesouraria Note (TY) Trading Strategy coloca swing trades na nota de dez anos (TY). Uma vez que o TY tipicamente se move inversamente para os mercados mais amplos, esta estratégia cria um trade swing semelhante ao shorting do S & P 500. Esse algoritmo T-Note tem expectativas positivas para condições de mercado em baixa. Este algoritmo de negociação é usado em ambos os nossos sistemas de negociação automatizados: O S & amp; P Crusher v2 & amp; O comerciante do balanço.


Estratégias de Negociação Diária.


As estratégias de negociação do dia seguinte colocam o day trade no S & amp; P 500 Emini Futures (ES). Eles quase sempre entram em negociações durante os primeiros 20 minutos após a abertura dos mercados de ações e saem antes do fechamento dos mercados. Paradas apertadas são utilizadas em todos os momentos.


Estratégia de Negociação do Dia de Futuros # 1: Algoritmo de Negociação de Dia.


A Estratégia de Negociação de Dia Curta coloca negociações diárias no Emini S & P Futures quando o mercado mostra fraqueza pela manhã (prefere uma grande diferença para baixo). Esta estratégia de negociação é utilizada no sistema de negociação automatizado S & amp; P Crusher v2.


Estratégia de Negociação de Dia de Futuro # 2: Algoritmo de Negociação de Dia de Breakout.


A Breakout Day Trading Strategy coloca o day trade no Emini-S & P Futures quando o mercado mostra força pela manhã. Esta estratégia de negociação de futuros é utilizada no sistema de negociação automatizado S & amp; P Crusher v2.


Estratégia de Negociação de Dia de Futuros # 3: Algoritmo de Negociação de Dia de Intervalo da Manhã.


O Morning Gap Day Trading Strategy coloca negócios de dia curto no Emini S & amp; P Futures quando o mercado tem uma grande lacuna, seguido por um curto período de fraqueza. Esta estratégia de negociação é utilizada no sistema de negociação automatizado S & amp; P Crusher v2.


Estratégias de Negociação de Opções.


As seguintes estratégias de negociação de opções cobram prêmio no S & amp; P 500 Emini Weekly Options (ES). Eles são usados ​​em nosso S & amp; P Crusher v2, a fim de aproveitar as vantagens de lateralmente, para baixo & amp; condições de mercado em movimento. Um benefício para as opções de negociação com nossas estratégias de negociação algorítmica é que elas são suportadas em um ambiente de negociação automatizado usando um dos corretores de execução automática.


Opções Trading Strategy # 1: Algoritmo de Condor Iron Condor.


A Estratégia de Negociação de Opções da Iron Condor é perfeita para quem deseja uma taxa de ganhos por negociação mais alta e que simplesmente quer cobrar prêmios no S & amp; P 500 Emini Futures com a venda da Iron Condors. Quando nossos algoritmos esperam uma condição de mercado de derivação lateral ou ascendente, esse sistema criará uma operação de Condor de Ferro. Essa estratégia é usada em um dos nossos Sistemas de negociação automatizados: O S & amp; P Crusher v2.


Estratégia de negociação de opções # 2: Algoritmo de opções de chamadas cobertas.


A Estratégia de Negociação das Opções de Compra Coberta vende de chamadas cobertas por dinheiro contra os algoritmos de momento Long swing swing, para arrecadar premium e ajudar a minimizar as perdas caso o mercado se mova contra nossa posição de algoritmo de momentum. Quando negociado com o Algoritmo de Troca de Momentum Swing - como é o caso no S & amp; P Crusher & amp; ES / TY Futures Trading Systems, isso cria uma posição de compra coberta. Quando negociados no Sistema de Negociação Bearish Trader, as chamadas são vendidas sem cobertura e, portanto, estão a descoberto. Em ambos os casos, & ndash; como um suporte ao longo do algoritmo & ndash; Ele funciona bem em condições de mercado em movimento lateral e para baixo. Essa estratégia é usada em um dos nossos Sistemas de negociação automatizados: O S & amp; P Crusher v2.


Embora cada uma dessas estratégias de negociação possa ser negociada sozinha, elas são negociadas melhor em uma coleção mais ampla de algoritmos de negociação & ndash; como visto em um dos nossos sistemas automatizados de negociação, como o The Swing Trader.


Algoritmos de negociação que realmente funcionam?


Essa série de vídeos de negociação algorítmica é feita para que nossos clientes possam ver os detalhes de cada negociação semanalmente. Assista a cada um dos seguintes vídeos de negociação algorítmica para ver em tempo real o desempenho de nossos algoritmos de negociação. Sinta-se à vontade para visitar nossos Críticas de AlgorithmicTrading & amp; Página Press Releases para ver o que os outros estão dizendo sobre nós.


Inscrição na Newsletter.


Obtenha atualizações de desempenho da AlgorithmicTrading juntando-se à nossa newsletter.


O que separa o comércio algorítmico de outras técnicas técnicas de negociação?


Nos dias de hoje, parece que todo mundo tem uma opinião sobre as técnicas de negociação técnica. Head & amp; Padrões de ombros, MACD Bullish Crosses, VWAP Divergences, a lista continua. Nesses vídeos, nosso engenheiro líder de projeto analisa alguns exemplos de estratégias de negociação encontradas on-line. Ele pega suas Tips Trading, faz um código e executa um back-test simples para ver o quão efetivas elas realmente são. Depois de analisar seus resultados iniciais, ele otimiza o código para ver se uma abordagem quantitativa à negociação pode melhorar as descobertas iniciais. Se você é novo em negociação algorítmica, esses blogs de vídeo serão bastante interessantes. Nosso designer utiliza máquinas de estado finito para codificar essas dicas básicas de negociação. Como a negociação algorítmica difere da negociação técnica tradicional? Simplificando, Algorithmic Trading requer precisão e fornece uma janela para um potencial de algoritmos baseado em back-testing que possui limitações.


Procurando por Algorithmic Trading Tutorial & amp; Como para vídeos?


Assista a várias apresentações de vídeo educativo feitas por nosso designer líder em negociação algorítmica para incluir um vídeo que cobre nossa Metodologia de Design de Quantificação Comercial e um Tutorial de Negociação Algorítmica. Esses vídeos de estratégia de negociação fornecem exemplos de codificação de comércio algorítmico e o introduzem à nossa abordagem de negociar os mercados usando análise quantitativa. Nesses vídeos, você verá muitas razões pelas quais a negociação automatizada está decolando para incluir a ajuda para remover suas emoções da negociação. Visite nossa página de vídeos de negociação educacional para ver uma lista completa de mídia educacional.


Comece a usar um dos nossos sistemas de negociação automatizados hoje.


Não perca. Junte-se aos que já estão negociando com AlgorithmicTrading. Comece hoje mesmo com um dos nossos pacotes de negociação algorítmica.


Várias opções de execução automática de comércio estão disponíveis.


Nossos algoritmos de negociação podem ser executados automaticamente usando um dos corretores de execução automática registrados pela NFA (com os melhores esforços) ou podem ser negociados em seu próprio PC usando MultiCharts ou Tradestation.


O FOX Group é uma corretora de introdução independente localizada no icônico prédio da Chicago Board of Trade, no coração do distrito financeiro da cidade. Eles são registrados no NFA e são capazes de executar nossos algoritmos automaticamente com os melhores esforços.


Os corretores interativos são corretores registrados pela NFA que podem executar nossos algoritmos automaticamente com os melhores esforços. Além disso, eles suportam clientes canadenses.


Se você preferir executar os algoritmos em seu próprio PC, o MultiCharts é a plataforma preferida de software de negociação para execução automática. Ele oferece benefícios consideráveis ​​aos negociadores e oferece vantagens significativas em relação às plataformas concorrentes. Ele vem com gráficos de alta definição, suporte a mais de 20 feeds de dados e mais de 10 corretores, backtesting dinâmico de estratégia em nível de portfólio, suporte a EasyLanguage, relatórios interativos de desempenho, otimização genética, scanner de mercado e replay de dados.


A TradeStation é mais conhecida pelo software de análise e pela plataforma de negociação eletrônica que oferece ao operador ativo e a determinados mercados de traders institucionais que permitem que os clientes projetem, testem, otimizem, monitorem e automatizem suas próprias ações, opções e opções personalizadas. estratégias de negociação de futuros. Tradestation é outra opção para pessoas que desejam negociar automaticamente nossos algoritmos em seu próprio PC.


Não deixe de visitar nossa página de Perguntas frequentes para ver uma lista de perguntas e respostas comuns. Você também pode clicar aqui para saber mais sobre a AlgorithmicTrading e seu Lead Developer.


Guia para iniciantes em negociação quantitativa.


Guia para iniciantes em negociação quantitativa.


Neste artigo, vou apresentar alguns dos conceitos básicos que acompanham um sistema de negociação quantitativo de ponta a ponta. Espera-se que este post atenda a dois públicos-alvo. O primeiro será indivíduos tentando obter um emprego em um fundo como um comerciante quantitativo. A segunda será pessoas que desejam tentar montar seu próprio negócio de comércio algorítmico "de varejo".


A negociação quantitativa é uma área extremamente sofisticada de finanças quânticas. Pode levar uma quantidade significativa de tempo para obter o conhecimento necessário para passar uma entrevista ou construir suas próprias estratégias de negociação. Não só isso, mas requer extensa experiência em programação, pelo menos em uma linguagem como MATLAB, R ou Python. No entanto, à medida que a frequência de negociação da estratégia aumenta, os aspectos tecnológicos tornam-se muito mais relevantes. Assim, estar familiarizado com o C / C ++ será de suma importância.


Um sistema de negociação quantitativo consiste em quatro componentes principais:


Identificação Estratégica - Encontrando uma estratégia, explorando uma vantagem e decidindo sobre a frequência de negociação Backtesting da estratégia - Obtendo dados, analisando o desempenho da estratégia e removendo vieses Sistema de Execução - Vinculando a uma corretora, automatizando a negociação e minimizando custos de transação tamanho da aposta "/ critério de Kelly e psicologia de negociação.


Começaremos dando uma olhada em como identificar uma estratégia de negociação.


Identificação de estratégia.


Todos os processos de negociação quantitativos começam com um período inicial de pesquisa. Este processo de pesquisa engloba encontrar uma estratégia, verificando se a estratégia se encaixa em um portfólio de outras estratégias que você pode estar executando, obtendo quaisquer dados necessários para testar a estratégia e tentando otimizar a estratégia para retornos mais altos e / ou menor risco. Você precisará levar em conta suas próprias necessidades de capital se administrar a estratégia como um operador de "varejo" e como os custos de transação afetarão a estratégia.


Ao contrário da crença popular, é bastante simples encontrar estratégias lucrativas através de várias fontes públicas. Os acadêmicos publicam regularmente resultados teóricos de negociação (embora, em sua maioria, sejam brutos dos custos de transação). Os blogs de finanças quantitativas discutirão as estratégias em detalhes. Os jornais de comércio delinearão algumas das estratégias empregadas pelos fundos.


Você pode questionar por que os indivíduos e as empresas estão interessados ​​em discutir suas estratégias lucrativas, especialmente quando sabem que outras pessoas "que estão ocupando o mercado" podem impedir que a estratégia funcione a longo prazo. A razão está no fato de que eles não costumam discutir os parâmetros exatos e os métodos de ajuste que eles realizaram. Essas otimizações são a chave para transformar uma estratégia relativamente medíocre em uma altamente lucrativa. Na verdade, uma das melhores maneiras de criar suas próprias estratégias únicas é encontrar métodos semelhantes e, em seguida, realizar seu próprio procedimento de otimização.


Aqui está uma pequena lista de lugares para começar a procurar ideias estratégicas:


Muitas das estratégias que você irá analisar se encaixarão nas categorias de reversão à média e tendência / momento. Uma estratégia de reversão à média é aquela que tenta explorar o fato de que existe uma média de longo prazo em uma "série de preços" (como o spread entre dois ativos correlatos) e que desvios de curto prazo dessa média eventualmente reverterão. Uma estratégia de momentum tenta explorar tanto a psicologia do investidor quanto a grande estrutura de fundos, "pegando carona" em uma tendência de mercado, que pode ganhar impulso em uma direção e seguir a tendência até que ela se reverta.


Outro aspecto extremamente importante da negociação quantitativa é a frequência da estratégia de negociação. A negociação de baixa frequência (LFT) geralmente se refere a qualquer estratégia que detenha ativos por mais de um dia de negociação. Correspondentemente, a negociação de alta frequência (HFT) geralmente se refere a uma estratégia que mantém ativos intraday. Negociação de frequência ultra-alta (UHFT) refere-se a estratégias que mantêm ativos na ordem de segundos e milissegundos. Como profissionais de varejo, HFT e UHFT certamente são possíveis, mas apenas com conhecimento detalhado da "pilha de tecnologia" e da dinâmica do livro de pedidos. Não vamos discutir esses aspectos em grande medida neste artigo introdutório.


Uma vez que uma estratégia, ou conjunto de estratégias, tenha sido identificada, ela agora precisa ser testada quanto à lucratividade nos dados históricos. Esse é o domínio do backtesting.


Backtesting de estratégia.


O objetivo do backtesting é fornecer evidências de que a estratégia identificada por meio do processo acima é lucrativa quando aplicada a dados históricos e fora da amostra. Isso define a expectativa de como a estratégia funcionará no "mundo real". No entanto, backtesting não é garantia de sucesso, por várias razões. É talvez a área mais sutil do comércio quantitativo, uma vez que implica inúmeros vieses, que devem ser cuidadosamente considerados e eliminados, tanto quanto possível. Discutiremos os tipos comuns de polarização, incluindo viés de antecipação, viés de sobrevivência e viés de otimização (também conhecido como viés de "espionagem de dados"). Outras áreas de importância dentro do backtesting incluem a disponibilidade e a limpeza de dados históricos, levando em consideração custos de transação realistas e decidindo sobre uma plataforma robusta de backtesting. Discutiremos os custos de transação na seção Sistemas de Execução abaixo.


Uma vez que uma estratégia tenha sido identificada, é necessário obter os dados históricos através dos quais realizar testes e, talvez, refinamento. Há um número significativo de fornecedores de dados em todas as classes de ativos. Seus custos geralmente variam de acordo com a qualidade, profundidade e pontualidade dos dados. O ponto de partida tradicional para os comerciantes de quantia iniciais (pelo menos no nível de varejo) é usar o conjunto de dados gratuito do Yahoo Finance. Eu não vou me debruçar muito sobre provedores aqui, ao invés disso eu gostaria de me concentrar nas questões gerais ao lidar com conjuntos de dados históricos.


As principais preocupações com dados históricos incluem exatidão / limpeza, viés de sobrevivência e ajuste para ações corporativas, como dividendos e desdobramentos:


Precisão pertence à qualidade geral dos dados - se contém algum erro. Às vezes, os erros podem ser fáceis de identificar, como com um filtro de pico, que detecta "picos" incorretos nos dados de séries temporais e os corrige. Em outras ocasiões, podem ser muito difíceis de detectar. Muitas vezes é necessário ter dois ou mais provedores e, em seguida, verificar todos os seus dados uns contra os outros. O viés de sobrevivência é muitas vezes uma "característica" de conjuntos de dados gratuitos ou baratos. Um conjunto de dados com viés de sobrevivência significa que ele não contém ativos que não estão mais sendo negociados. No caso de ações, isso significa ações excluídas / falidas. Esse viés significa que qualquer estratégia de negociação de ações testada em tal conjunto de dados provavelmente terá um desempenho melhor do que no "mundo real", já que os "vencedores" históricos já foram pré-selecionados. As ações corporativas incluem atividades "logísticas" realizadas pela empresa, que geralmente causam uma mudança na função de etapa do preço bruto, que não deve ser incluída no cálculo dos retornos do preço. Ajustes para dividendos e desdobramentos são os culpados comuns. Um processo conhecido como ajuste de costas é necessário para ser realizado em cada uma dessas ações. É preciso ter muito cuidado para não confundir uma divisão de ações com um verdadeiro ajuste de retorno. Muitos traders foram pegos por uma ação corporativa!


Para realizar um procedimento de backtest, é necessário usar uma plataforma de software. Você tem a escolha entre softwares backtest dedicados, como o Tradestation, uma plataforma numérica como o Excel ou o MATLAB ou uma implementação personalizada completa em uma linguagem de programação como Python ou C ++. Não vou me demorar muito com Tradestation (ou similar), Excel ou MATLAB, pois acredito na criação de uma pilha completa de tecnologia interna (pelas razões descritas abaixo). Um dos benefícios disso é que o software de backtest e o sistema de execução podem ser totalmente integrados, mesmo com estratégias estatísticas extremamente avançadas. Para as estratégias de HFT, em particular, é essencial usar uma implementação personalizada.


Ao fazer o backtest de um sistema, é preciso ser capaz de quantificar o desempenho do mesmo. As métricas "padrão da indústria" para estratégias quantitativas são o rebaixamento máximo e o Índice de Sharpe. O rebaixamento máximo caracteriza a maior queda de ponta a ponta na curva de patrimônio da conta em um determinado período de tempo (geralmente anual). Isso é mais frequentemente citado como uma porcentagem. As estratégias de LFT tenderão a ter rebaixamentos maiores do que as estratégias de HFT, devido a vários fatores estatísticos. Um backtest histórico mostrará o último drawdown máximo, que é um bom guia para o futuro desempenho de drawdown da estratégia. A segunda medida é o Índice de Sharpe, que é definido heuristicamente como a média dos retornos excedentes dividida pelo desvio padrão desses retornos excedentes. Aqui, os retornos excedentes referem-se ao retorno da estratégia acima de um benchmark pré-determinado, como o S & P500 ou um Tesouro de 3 meses. Note que o retorno anualizado não é uma medida normalmente utilizada, pois não leva em conta a volatilidade da estratégia (diferentemente do Índice de Sharpe).


Uma vez que uma estratégia tenha sido testada novamente e seja considerada livre de vieses (na medida em que isso seja possível!), Com um bom Sharpe e rebaixamentos minimizados, é hora de construir um sistema de execução.


Sistemas de Execução.


Um sistema de execução é o meio pelo qual a lista de negociações geradas pela estratégia é enviada e executada pelo corretor. Apesar do fato de que a geração de comércio pode ser semi ou totalmente automatizada, o mecanismo de execução pode ser manual, semi-manual (ou seja, "um clique") ou totalmente automatizado. Para estratégias de LFT, técnicas manuais e semi-manuais são comuns. Para as estratégias de HFT, é necessário criar um mecanismo de execução totalmente automatizado, que muitas vezes será fortemente acoplado ao gerador de comércio (devido à interdependência entre estratégia e tecnologia).


As principais considerações ao criar um sistema de execução são a interface com a corretora, a minimização dos custos de transação (incluindo comissão, derrapagem e spread) e a divergência de desempenho do sistema ao vivo do desempenho do backtested.


Há muitas maneiras de interagir com uma corretora. Eles variam de chamar seu corretor por telefone até uma Application Programming Interface (API) de alto desempenho totalmente automatizada. O ideal é que você queira automatizar a execução de seus negócios o máximo possível. Isso libera você para se concentrar em novas pesquisas, bem como permitir que você execute várias estratégias ou mesmo estratégias de maior frequência (na verdade, HFT é essencialmente impossível sem execução automatizada). O software comum de backtesting descrito acima, como MATLAB, Excel e Tradestation, é bom para estratégias mais simples e de menor frequência. No entanto, será necessário construir um sistema de execução interno escrito em uma linguagem de alto desempenho, como C ++, para fazer qualquer HFT real. Como uma anedota, no fundo em que eu costumava trabalhar, tínhamos um "ciclo de negociação" de 10 minutos, onde baixávamos novos dados de mercado a cada 10 minutos e depois executávamos negociações com base nessas informações no mesmo período de tempo. Isso estava usando um script Python otimizado. Para qualquer coisa que se aproxime de dados de frequência de minutos ou segundos, acredito que C / C ++ seria mais ideal.


Em um fundo maior, muitas vezes não é o domínio do comerciante de quantificação para otimizar a execução. No entanto, em pequenas lojas ou empresas de HFT, os comerciantes são os executores e, portanto, um conjunto de habilidades muito mais amplo é geralmente desejável. Tenha isso em mente se você deseja ser empregado por um fundo. Suas habilidades de programação serão tão importantes, se não mais, do que suas estatísticas e talentos econométricos!


Outra questão importante que cai sob a bandeira da execução é a minimização dos custos de transação. Geralmente, há três componentes nos custos de transação: Comissões (ou impostos), que são as taxas cobradas pela corretora, pela bolsa e pela SEC (ou órgão regulador governamental similar); escorregamento, que é a diferença entre o que você pretendia que seu pedido fosse preenchido versus o que foi realmente preenchido; spread, que é a diferença entre o preço de compra / venda do título negociado. Observe que o spread NÃO é constante e depende da liquidez atual (ou seja, disponibilidade de ordens de compra / venda) no mercado.


Os custos de transação podem fazer a diferença entre uma estratégia extremamente lucrativa com um bom índice de Sharpe e uma estratégia extremamente não lucrativa com um índice de Sharpe terrível. Pode ser um desafio prever corretamente os custos de transação de um backtest. Dependendo da frequência da estratégia, você precisará acessar os dados históricos do câmbio, que incluirão dados de ticks para preços de compra / venda. Equipes inteiras de quantos são dedicadas à otimização da execução nos fundos maiores, por esses motivos. Considere o cenário em que um fundo precisa descarregar uma quantidade substancial de negociações (das quais as razões para isso são muitas e variadas!). Ao "despejar" tantas ações no mercado, elas rapidamente deprimirão o preço e podem não obter uma execução ideal. Daí algoritmos que "gotejam feed" ordens para o mercado existem, embora o fundo corre o risco de derrapagem. Além disso, outras estratégias "atacam" essas necessidades e podem explorar as ineficiências. Este é o domínio da arbitragem da estrutura do fundo.


A última grande questão para os sistemas de execução diz respeito à divergência de desempenho da estratégia do desempenho do backtested. Isso pode acontecer por vários motivos. Já analisamos o viés de look-ahead e o viés de otimização em profundidade, ao considerar os backtests. No entanto, algumas estratégias não facilitam o teste desses vieses antes da implantação. Isso ocorre em HFT mais predominantemente. Pode haver bugs no sistema de execução, bem como a própria estratégia de negociação que não aparece em um backtest, mas aparece no live trading. O mercado pode ter sido sujeito a uma mudança de regime após a implementação da sua estratégia. Novos ambientes regulatórios, mudanças no sentimento do investidor e fenômenos macroeconômicos podem levar a divergências na forma como o mercado se comporta e, portanto, na rentabilidade de sua estratégia.


Gerenciamento de riscos.


A peça final do quebra-cabeça de negociação quantitativa é o processo de gerenciamento de risco. "Risco" inclui todos os vieses anteriores que discutimos. Isso inclui risco de tecnologia, como servidores co-localizados na central de repente desenvolvendo um mau funcionamento do disco rígido. Isso inclui risco de corretagem, como o corretor estar falido (não tão louco quanto parece, dado o recente susto com a MF Global!). Em suma, abrange quase tudo o que poderia interferir com a implementação comercial, dos quais existem muitas fontes. Livros inteiros são dedicados ao gerenciamento de risco para estratégias quantitativas, então eu não tentarei elucidar todas as possíveis fontes de risco aqui.


A gestão de risco também abrange o que é conhecido como alocação de capital ideal, que é um ramo da teoria de portfólio. Esse é o meio pelo qual o capital é alocado a um conjunto de estratégias diferentes e aos negócios dentro dessas estratégias. É uma área complexa e depende de algumas matemáticas não triviais. O padrão da indústria pelo qual a alocação ótima de capital e a alavancagem das estratégias estão relacionadas é chamado de critério de Kelly. Como este é um artigo introdutório, não vou me alongar em seu cálculo. O critério de Kelly faz algumas suposições sobre a natureza estatística dos retornos, que muitas vezes não são verdadeiros nos mercados financeiros, de modo que os operadores geralmente são conservadores quando se trata da implementação.


Outro componente fundamental do gerenciamento de riscos é lidar com o próprio perfil psicológico. Existem muitos vieses cognitivos que podem surgir na negociação. Embora isso seja reconhecidamente menos problemático com negociação algorítmica se a estratégia for deixada em paz! Um viés comum é o da aversão à perda, em que uma posição perdedora não será fechada devido à dor de ter que perceber uma perda. Da mesma forma, os lucros podem ser tomados muito cedo porque o medo de perder um lucro já ganho pode ser muito grande. Outro viés comum é conhecido como viés de recência. Isso se manifesta quando os operadores enfatizam demais os eventos recentes e não a longo prazo. Então, é claro, há o par clássico de preconceitos emocionais - medo e ganância. Estes podem muitas vezes levar a sub ou sobre-alavancagem, o que pode causar blow-up (ou seja, o título da conta indo para zero ou pior!) Ou lucros reduzidos.


Como pode ser visto, o comércio quantitativo é uma área extremamente complexa, embora muito interessante, de financiamento quantitativo. Eu literalmente arranhei a superfície do tópico neste artigo e já está ficando bastante longo! Livros e documentos inteiros foram escritos sobre questões para as quais eu só dei uma ou duas sentenças. Por essa razão, antes de se candidatar a cargos quantitativos de negociação de fundos, é necessário realizar uma quantidade significativa de estudo de base. No mínimo, você precisará de um extenso conhecimento em estatística e econometria, com muita experiência em implementação, por meio de uma linguagem de programação como MATLAB, Python ou R. Para estratégias mais sofisticadas no final de frequência mais alta, seu conjunto de habilidades é provável para incluir a modificação do kernel do Linux, C / C ++, programação de montagem e otimização de latência de rede.


Se você estiver interessado em tentar criar suas próprias estratégias de negociação algorítmica, minha primeira sugestão seria se programar bem. Minha preferência é construir o máximo possível de dados capturados, backtester de estratégia e sistema de execução. Se o seu próprio capital está em jogo, não dormiria melhor à noite sabendo que você testou completamente o seu sistema e está ciente de suas armadilhas e problemas específicos? Terceirizar isso para um fornecedor, enquanto potencialmente economiza tempo a curto prazo, pode ser extremamente caro a longo prazo.


A Quantcademy.


Participe do portal de associação da Quantcademy que atende à crescente comunidade de traders de quantificação de varejo e aprenda como aumentar a lucratividade de sua estratégia.


Negociação Quantitativa.


Investimento quantitativo e idéias de negociação, pesquisa e análise.


Sexta-feira, 02 de fevereiro de 2018.


Fluxo de ordens de FX como um preditor.


Quinta-feira, 04 de janeiro de 2018.


Um novo impulsionador de capital: Arbitragem Esportiva.


Por Stephen Hope.


Sexta-feira, 17 de novembro de 2017.


Otimizando estratégias de negociação sem overfitting.


podemos simular quantas séries de preços (todas seguindo o mesmo processo ARMA) que desejamos. Isso significa que podemos simular quantos negócios quisermos e obter parâmetros de negociação ideais com a maior precisão que desejarmos. Isso é quase tão bom quanto uma solução analítica. (Veja fluxograma abaixo que ilustra este procedimento - clique para ampliar.)


Curiosamente, o modo do K ótimo é 0 para qualquer mês. Isso certamente contribui para uma estratégia de negociação simples: basta comprar sempre que o retorno do log esperado for positivo e vice-versa para os curtos. O CAGR é de cerca de 4,5%, assumindo custos de transação zero e execuções de preço intermediário. Aqui está a curva de retornos cumulativos:


Sobre os autores: Ernest Chan é o membro administrativo da QTS Capital Management, LLC. Ray Ng é um estrategista quantitativo na QTS. Ele recebeu seu Ph. D. na física teórica da matéria condensada da Universidade McMaster.


Próximos Workshops pelo Dr. Ernie Chan.


Estarei moderando este workshop on-line para Nick Kirk, um comerciante especializado em criptomoedas e gerente de fundos, que ministrou este curso amplamente aclamado aqui e na CQF em Londres.


Este curso on-line se concentra em backtesting intraday e estratégias de opções de portfólio. Nenhuma teoria de preços de opções incômodas será discutida, já que a ênfase está na negociação de arbitragem.


Quantas estratégias - são para você?


As estratégias de investimento quantitativo evoluíram para ferramentas muito complexas com o advento dos computadores modernos, mas as raízes das estratégias remontam a mais de 70 anos. Eles normalmente são administrados por equipes altamente instruídas e usam modelos proprietários para aumentar sua capacidade de vencer o mercado. Existem até programas prontos para uso que são plug-and-play para aqueles que buscam simplicidade. Os modelos Quant sempre funcionam bem quando testados novamente, mas suas aplicações reais e sua taxa de sucesso são discutíveis. Embora pareçam funcionar bem em mercados altistas, quando os mercados se descontrolam, as estratégias quantitativas estão sujeitas aos mesmos riscos que qualquer outra estratégia.


Estratégias de investimento quantitativo tornaram-se extremamente populares entre os comerciantes de dia, mas eles não são as únicas estratégias que os comerciantes usam para consistentemente lucrar. O curso Torne-se um Day Trader da Investopedia descreve uma estratégia comprovada que inclui seis tipos de negociações, além de estratégias para gerenciar riscos. Com mais de cinco horas de vídeo sob demanda, exercícios e conteúdo interativo, você obterá as habilidades necessárias para negociar qualquer segurança em qualquer mercado.]


Um dos pais fundadores do estudo da teoria quantitativa aplicado ao financiamento foi Robert Merton. Você pode imaginar o quão difícil e demorado foi o processo antes do uso de computadores. Outras teorias em finanças também evoluíram a partir de alguns dos primeiros estudos quantitativos, incluindo a base da diversificação de portfólio baseada na moderna teoria do portfólio. O uso tanto do cálculo quantitativo quanto do cálculo levou a muitas outras ferramentas comuns, incluindo uma das mais famosas, a fórmula de precificação de opções Black-Scholes, que não apenas ajuda as opções de preço dos investidores e desenvolve estratégias, mas ajuda a manter os mercados em cheque com liquidez.


Quando aplicado diretamente ao gerenciamento de portfólio, o objetivo é como qualquer outra estratégia de investimento: agregar valor, retorno alfa ou excesso. Quants, como os desenvolvedores são chamados, compõem modelos matemáticos complexos para detectar oportunidades de investimento. Existem tantos modelos por aí quanto quantos os desenvolvem e todos afirmam ser os melhores. Um dos pontos mais vendidos de uma estratégia de investimento quant é que o modelo e, em última análise, o computador, toma a decisão de compra / venda real, não um ser humano. Isso tende a eliminar qualquer resposta emocional que uma pessoa possa ter ao comprar ou vender investimentos.


Quantas estratégias são agora aceitas na comunidade de investimentos e administradas por fundos mútuos, fundos de hedge e investidores institucionais. Eles normalmente usam o nome de geradores alfa ou alfa gens.


Assim como em "O Mágico de Oz", alguém está por trás da cortina que conduz o processo. Como em qualquer modelo, é tão bom quanto o humano que desenvolve o programa. Embora não haja um requisito específico para se tornar um quant, a maioria das empresas que executam modelos quantificados combinam as habilidades de analistas de investimento, estatísticos e programadores que codificam o processo nos computadores. Devido à natureza complexa dos modelos matemáticos e estatísticos, é comum ver credenciais como pós-graduação e doutorado em finanças, economia, matemática e engenharia.


Historicamente, esses membros da equipe trabalhavam nos back-offices, mas à medida que os modelos quânticos se tornaram mais comuns, o back office está se mudando para o front office.


Benefícios das Estratégias Quant.


Embora a taxa de sucesso global seja discutível, a razão pela qual algumas estratégias de quant funcionam é que elas são baseadas na disciplina. Se o modelo estiver certo, a disciplina mantém a estratégia trabalhando com computadores de velocidade relâmpago para explorar ineficiências nos mercados com base em dados quantitativos. Os modelos em si podem se basear em apenas alguns índices, como P / L, dívida em relação ao capital e crescimento de lucros, ou usar milhares de insumos trabalhando juntos ao mesmo tempo.


Estratégias bem-sucedidas podem captar as tendências em seus estágios iniciais, à medida que os computadores executam constantemente cenários para localizar ineficiências antes que outras o façam. Os modelos são capazes de analisar um grupo muito grande de investimentos simultaneamente, onde o analista tradicional pode estar olhando apenas alguns de cada vez. O processo de triagem pode classificar o universo por níveis de notas como 1-5 ou A-F, dependendo do modelo. Isso torna o processo de negociação real muito simples, investindo em investimentos altamente cotados e vendendo os de baixa classificação.


Os modelos Quant também abrem variações de estratégias como long, short e long / short. Os fundos quant bem-sucedidos estão atentos ao controle de risco devido à natureza de seus modelos. A maioria das estratégias começa com um universo ou benchmark e usa pesos setoriais e setoriais em seus modelos. Isso permite que os fundos controlem a diversificação até certo ponto sem comprometer o modelo em si. Os fundos Quant geralmente são executados com base em custos menores porque não precisam de tantos analistas tradicionais e gerentes de portfólio para executá-los.


Desvantagens das estratégias Quant.


Existem razões pelas quais tantos investidores não abraçam totalmente o conceito de deixar uma caixa preta executar seus investimentos. Para todos os fundos quant bem sucedidos lá fora, assim como muitos parecem ser mal sucedidos. Infelizmente para a reputação dos quants, quando eles falham, eles falham em grande momento.


O Long-Term Capital Management foi um dos fundos de hedge mais famosos, já que foi administrado por alguns dos mais respeitados líderes acadêmicos e dois economistas ganhadores do Prêmio Nobel, Myron S. Scholes e Robert C. Merton. Durante a década de 1990, sua equipe gerou retornos acima da média e atraiu capital de todos os tipos de investidores. Eles eram famosos por não apenas explorar ineficiências, mas também por usar o acesso fácil ao capital para criar enormes apostas alavancadas nas direções do mercado.


A natureza disciplinada de sua estratégia criou a fraqueza que levou ao seu colapso. O Long-Term Capital Management foi liquidado e dissolvido no início de 2000. Seus modelos não incluíam a possibilidade de que o governo russo pudesse inadimplir parte de sua própria dívida. Esse evento único desencadeou eventos e uma reação em cadeia aumentada pela destruição gerada pela alavancagem. A LTCM estava tão fortemente envolvida com outras operações de investimento que seu colapso afetou os mercados mundiais, provocando eventos dramáticos. A longo prazo, o Federal Reserve entrou em cena para ajudar, e outros bancos e fundos de investimento apoiaram o LTCM para evitar mais danos. Essa é uma das razões pelas quais os fundos de quantia podem falhar, pois são baseados em eventos históricos que podem não incluir eventos futuros.


Embora uma equipe de quanteamento forte esteja constantemente adicionando novos aspectos aos modelos para prever eventos futuros, é impossível prever o futuro a cada vez. Os fundos Quant podem também ficar sobrecarregados quando a economia e os mercados estão experimentando uma volatilidade acima da média. Os sinais de compra e venda podem vir tão rapidamente que a alta rotatividade pode criar comissões elevadas e eventos tributáveis. Os fundos Quant podem também representar um perigo quando são comercializados como prova de impacto ou se baseiam em estratégias curtas. A previsão de desacelerações, o uso de derivativos e a combinação de alavancagem podem ser perigosos. Um turno errado pode levar a implosões, que muitas vezes são notícia.


Estratégias de investimento quantitativo evoluíram de caixas pretas de back office para ferramentas de investimento tradicionais. Eles são projetados para utilizar as melhores mentes dos negócios e os computadores mais rápidos para explorar ineficiências e usar alavancagem para fazer apostas no mercado. Eles podem ter muito sucesso se os modelos incluírem todas as entradas corretas e forem ágeis o suficiente para prever eventos anormais de mercado. Por outro lado, enquanto fundos quantificados são rigorosamente testados até que funcionem, sua fraqueza é que eles confiam em dados históricos para seu sucesso. Embora o investimento no estilo quant tenha seu lugar no mercado, é importante estar ciente de suas deficiências e riscos. Para ser consistente com as estratégias de diversificação, é uma boa ideia tratar as estratégias quantitativas como um estilo de investimento e combiná-las com as estratégias tradicionais para alcançar a diversificação adequada.

Комментариев нет:

Отправить комментарий